89 research outputs found

    Experimental study of 199Hg spin anti-relaxation coatings

    Full text link
    We report on a comparison of spin relaxation rates in a 199^{199}Hg magnetometer using different wall coatings. A compact mercury magnetometer was built for this purpose. Glass cells coated with fluorinated materials show longer spin coherence times than if coated with their hydrogenated homologues. The longest spin relaxation time of the mercury vapor was measured with a fluorinated paraffin wall coating.Comment: 9 pages, 6 figures, submitted to JINS

    A method to localize gamma-ray bursts using POLAR

    Full text link
    The hard X-ray polarimeter POLAR aims to measure the linear polarization of the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts (GRBs). The position in the sky of the detected GRBs is needed to determine their level of polarization. We present here a method by which, despite of the polarimeter incapability of taking images, GRBs can be roughly localized using POLAR alone. For this purpose scalers are attached to the output of the 25 multi-anode photomultipliers (MAPMs) that collect the light from the POLAR scintillator target. Each scaler measures how many GRB photons produce at least one energy deposition above 50 keV in the corresponding MAPM. Simulations show that the relative outputs of the 25 scalers depend on the GRB position. A database of very strong GRBs simulated at 10201 positions has been produced. When a GRB is detected, its location is calculated searching the minimum of the chi2 obtained in the comparison between the measured scaler pattern and the database. This GRB localization technique brings enough accuracy so that the error transmitted to the 100% modulation factor is kept below 10% for GRBs with fluence Ftot \geq 10^(-5) erg cm^(-2) . The POLAR localization capability will be useful for those cases where no other instruments are simultaneously observing the same field of view.Comment: 13 pages, 10 figure

    An endoscopic detector for ultracold neutrons

    Get PDF
    A new versatile detector for ultracold neutrons (UCN) has been built and operated which combines multi-pixel photon counters and GS10 lithium-doped scintillators. Such detectors can be very small and can be used to monitor UCN inside storage vessels or guides with negligible influence (of order 10−6 on the UCN intensity itself. We have shown that such detectors can be used in a very harsh radiation environment of up to 200Gy/h via the addition of a 4m long quartz light guide in order to place the radiation-sensitive photon counters outside the hot zone. Additionally we have measured the UCN storage times in situ in this harsh environmen

    An Improved Search for the Neutron Electric Dipole Moment

    Full text link
    A permanent electric dipole moment of fundamental spin-1/2 particles violates both parity (P) and time re- versal (T) symmetry, and hence, also charge-parity (CP) symmetry since there is no sign of CPT-violation. The search for a neutron electric dipole moment (nEDM) probes CP violation within and beyond the Stan- dard Model. The experiment, set up at the Paul Scherrer Institute (PSI), an improved, upgraded version of the apparatus which provided the current best experimental limit, dn < 2.9E-26 ecm (90% C.L.), by the RAL/Sussex/ILL collaboration: Baker et al., Phys. Rev. Lett. 97, 131801 (2006). In the next two years we aim to improve the sensitivity of the apparatus to sigma(dn) = 2.6E-27 ecm corresponding to an upper limit of dn < 5E-27 ecm (95% C.L.), in case for a null result. In parallel the collaboration works on the design of a new apparatus to further increase the sensitivity to sigma(dn) = 2.6E-28 ecm.Comment: APS Division for particles and fields, Conference Proceedings, Two figure

    A highly stable atomic vector magnetometer based on free spin precession

    Full text link
    We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 μ\muT magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 μ\murad for integration times from 10 s up to 2000 s

    Constraining interactions mediated by axion-like particles with ultracold neutrons

    Get PDF
    We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and 199^{199}Hg atoms confined in the same volume. The measurement was performed in a \sim1μ\mu T vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence of a short range spin-dependent interaction that could possibly be mediated by axions or axion-like particles. The interaction strength is proportional to the CP violating product of scalar and pseudoscalar coupling constants gSgPg_Sg_P. Our result confirms limits from complementary experiments with spin-polarized nuclei in a model-independent way. Limits from other neutron experiments are improved by up to two orders of magnitude in the interaction range of 106<λ<10410^{-6}<\lambda<10^{-4} m

    An Improved Neutron Electric Dipole Moment Experiment

    Full text link
    A new measurement of the neutron EDM, using Ramsey's method of separated oscillatory fields, is in preparation at the new high intensity source of ultra-cold neutrons (UCN) at the Paul Scherrer Institute, Villigen, Switzerland (PSI). The existence of a non-zero nEDM would violate both parity and time reversal symmetry and, given the CPT theorem, might lead to a discovery of new CP violating mechanisms. Already the current upper limit for the nEDM (|d_n|<2.9E-26 e.cm) constrains some extensions of the Standard Model. The new experiment aims at a two orders of magnitude reduction of the experimental uncertainty, to be achieved mainly by (1) the higher UCN flux provided by the new PSI source, (2) better magnetic field control with improved magnetometry and (3) a double chamber configuration with opposite electric field directions. The first stage of the experiment will use an upgrade of the RAL/Sussex/ILL group's apparatus (which has produced the current best result) moved from Institut Laue-Langevin to PSI. The final accuracy will be achieved in a further step with a new spectrometer, presently in the design phase.Comment: Flavor Physics & CP Violation Conference, Taipei, 200

    Diffuse reflection of ultracold neutrons from low-roughness surfaces

    Get PDF
    We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w , obtained by fitting the micro-roughness model to the data are in the range 1 \le b \le3 nm and 10 \le w \le120 nm, in qualitative agreement with independent measurements using atomic force microscop

    Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins

    Get PDF
    Physics at the Planck scale could be revealed by looking for tiny violations of fundamental symmetries in low energy experiments. In 2008, a sensitive test of the isotropy of the Universe using has been performed with stored ultracold neutrons (UCN), this is the first clock-comparison experiment performed with free neutrons. During several days we monitored the Larmor frequency of neutron spins in a weak magnetic field using the Ramsey resonance technique. An non-zero cosmic axial field, violating rotational symmetry, would induce a daily variation of the precession frequency. Our null result constitutes one of the most stringent tests of Lorentz invariance to date.Comment: proceedings of the PNCMI2010 conferenc

    Measurement of the radiative decay of polarized muons in the MEG experiment

    Get PDF
    We studied the radiative muon decay μ+e+ννˉγ\mu^+ \to e^+\nu\bar{\nu}\gamma by using for the first time an almost fully polarized muon source. We identified a large sample (~13000) of these decays in a total sample of 1.8x10^14 positive muon decays collected in the MEG experiment in the years 2009--2010 and measured the branching ratio B(μ+e+ννˉγ\mu^+ \to e^+\nu\bar{\nu}\gamma) = (6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e > 45 MeV and E_{\gamma} > 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalization channel, and a strong quality check of the complete MEG experiment in the search for μ+e+γ\mu^+ \to e^+\gamma process.Comment: 8 pages, 7 figures. Added an introduction to NLO calculation which was recently calculated. Published versio
    corecore